| | | Perfluorooctanesulfonic
acid
PFOS
C ₈ HF ₁₇ O ₃ S | Perfluorooctanoic
acid
PFOA
C ₈ HF ₁₅ O ₂ | Combined PFOS
PFOA | Perfluorohexanesulfonic
acid
PFHxS
C ₆ HF ₁₃ O ₃ S | Perfluorononanoic
acid
PFNA
C₃HF₁₁O₂ | Perfluorobutanes
ulfonic acid
PFBS
C ₄ HF ₉ O ₃ S | Perfluoroheptanoic
acid
PFHpA
C ₇ HF ₁₃ O ₂ | Perfluorohexanoic
acid
PFHxA
C ₆ HF ₁₁ O ₂ | | |----------|---------------------------|---|---|-----------------------------|--|---|---|---|--|--| | Well No. | Sample
Collection Date | PFOS (ppt) | PFOA (ppt) | Combined
PFOS/PFOA (ppt) | PFHxS (ppt) | PFNA (ppt) | PFBS (ppt) | PFHpA (ppt) | PFHxA (ppt) | Comments | | 9 | 6/25/2014 | ND | UCMR Higher detection levels | | 9 | 12/12/2014 | ND | UCMR Higher detection levels | | 9 | 12/15/2015 | 5.7 | 7.6 | 13.3 | 7.2 | ND | 3.2 | ND | 2.8 | | | 9 | 5/10/2016 | 5.1 | 4.5 | 9.6 | 3.8 | ND | ND | ND | ND | | | 9 | 7/27/2016
8/10/2016 | 8.6
11.0 | 6.8
6.6 | 15.4
17.6 | 6.1
7.5 | ND
ND | 2.7
3.4 | ND
ND | ND
2.6 | | | 9 | 9/22/2016 | 13.0 | 11.0 | 24.0 | 9.2 | ND
ND | 2.7 | ND
ND | 3.1 | | | 9 | 10/12/2016 | 14.0 | 11.0 | 25.0 | 12.0 | ND ND | 4.5 | ND ND | 3.8 | | | 9 | 10/25/2016 | 16.0 | 8.9 | 24.9 | 12.0 | ND | 4.4 | ND | 4.4 | | | 9 | 11/9/2016 | 14.0 | 8.8 | 22.8 | 12.0 | ND | 4.3 | ND | 3.0 | | | 9 | 12/1/2016 | 13.0 | 9.0 | 22.0 | 13.0 | ND | 4.1 | ND | 3.5 | | | 9 | 12/14/2016 | 13.0 | 9.0 | 22.0 | 13.0 | ND | 4.1 | ND | ND | | | 9 | 1/11/2017 | 5.9 | 6.4 | 12.3 | 8.1 | ND | 3.8 | ND | 2.5 | | | 9 | 2/1/2017
2/23/2017 | 4.1
2.6 | ND
4.0 | 4.1
6.6 | 3.2 | ND | ND | ND | ND | | | 9 | 3/8/2017 | 4.1 | 3.3 | 7.4 | ND | ND
ND | ND
ND | ND
ND | ND
ND | | | 9 | 3/24/2017 | 3.7 | 4.2 | 7.9 | IND | IND. | 140 | ND | ND | | | 9 | 4/4/2017 | 4.5 | 4.0 | 8.5 | | | | | | | | 9 | 5/3/2017 | ND | ND | ND | | | | | | | | 9 | 5/31/2017 | ND | ND | ND | | | | | | | | 9 | 7/7/2017 | 3.9 | 7.4 | 11.3 | 5.1 | ND | 3.3 | ND | | | | 9 | 7/19/2017 | ND | | | 9 | 8/1/2017 | ND
ND | ND | ND
ND | ND
ND | ND
ND | ND | ND | | | | 9 | 8/16/2017
9/7/2017 | ND
ND | | | 9 | 9/19/2017 | ND
ND | ND
ND | ND
ND | ND | ND
ND | ND
ND | ND
ND | | | | 9 | 10/4/2017 | ND ND | ND | ND | ND ND | ND ND | ND | ND | | | | 9 | 10/17/2017 | ND | | | 9 | 11/9/2017 | ND | | | 9 | 11/22/2017 | 3.7 | 4.0 | 7.7 | ND | ND | ND | ND | | | | 9 | 12/5/2017 | ND
ND | ND | ND
ND | ND | ND
ND | ND | ND | | | | 9 | 12/19/2017 | ND
ND | | | 9 | 1/5/2018
1/16/2018 | ND
ND | | | 9 | 2/6/2018 | ND
ND | ND
ND | ND
ND | ND | ND
ND | ND
ND | ND
ND | | | | 9 | 2/23/2018 | ND | ND | ND ND | ND | ND | ND | ND | | | | 9 | 3/8/2018 | ND | | | 9 | 4/3/2018 | 6.9 | 7.0 | 13.9 | 2.7 | ND | ND | 2.6 | | | | 9 | 5/3/2018 | ND | | | 9 | 6/5/2018 | 4.3 | 4.9
ND | 9.2 | 2.4 | ND | 2.4 | ND | | | | 9 | 7/6/2018
8/10/2018 | ND
ND | | | 9 | 9/6/2018 | ND
ND | | | 9 | 9/27/2018 | 2.7 | 3.5 | 6.2 | ND | ND
ND | 2.5 | ND
ND | | | | 9 | 10/17/2018 | 4.4 | 6.3 | 10.7 | ND | ND | 3.0 | ND | | | | 9 | 10/31/2018 | 4.1 | 6.4 | 10.5 | 2.3 | ND | 3.1 | ND | | | | 9 | 11/15/2018 | 3.3 | 5.6 | 8.9 | ND | ND | ND | ND | | | | 9 | 11/27/2018 | 2.3 | 6.2 | 8.5 | ND | ND
ND | ND
0.4 | ND | | | | 9 | 12/11/2018
12/27/2018 | 3.3
2.7 | 5.3
4.5 | 8.6
7.2 | ND
ND | ND
ND | 2.4
ND | ND
ND | | | | 9 | 1/24/2019 | 3.5 | 4.5 | 7.5 | ND
ND | ND
ND | ND | טאו | | | | 9 | 2/5/2019 | 3.3 | 5.4 | 8.7 | ND
ND | ND
ND | 2.3 | ND | | | | 9 | 2/20/2019 | 2.8 | 4.6 | 7.4 | ND | ND | 2.4 | ND | | | | 9 | 3/20/2019 | 2.9 | 4.6 | 7.5 | ND | ND | ND | ND | | 3/6/2019 sample failed QA/QC on hold time | | 9 | 4/3/2019 | 3.5 | 5.7 | 9.2 | ND | ND | 2.5 | ND | | | | 9 | 4/17/2019 | 3.2 | 4.1 | 7.3 | ND | ND | ND | ND | | | | 9 | 5/1/2019 | 3.0 | 3.9 | 6.9 | ND | ND | 3.4 | ND | | | |---|------------|-----|-----|------|-----|-----|-----|-----|-----|-------------------------------| | 9 | 5/15/2019 | 3.0 | 5.1 | 8.1 | ND | ND | 3.9 | ND | | | | 9 | 5/29/2019 | 3.5 | 5.0 | 8.5 | ND | ND | 2.6 | ND | | | | | | | | | | | | | | Values in red mean lab is not | | 9 | 6/12/2019 | 3.8 | ND | 3.8 | 2.4 | 6.2 | 3.0 | ND | | certified in PA for compound | | 9 | 7/10/2019 | ND | 6.0 | 6.0 | ND | ND | 2.5 | ND | 3.2 | | | 9 | 7/25/2019 | 2.5 | 5.3 | 7.8 | ND | ND | 2.5 | ND | 2.6 | | | 9 | 8/6/2019 | 6.0 | 4.4 | 10.4 | 2.4 | ND | 2.8 | ND | ND | | | 9 | 8/21/2019 | 3.0 | 4.8 | 7.8 | 2.6 | ND | 2.3 | ND | ND | | | | | | | | | | | | | Well taken out of service on | | 9 | 9/4/2019 | 7.3 | 4.8 | 12.1 | ND | 3.4 | 2.2 | ND | ND | 9/30/19 | | 9 | 10/1/2019 | ND | | 9 | 11/7/2019 | ND | | 9 | 12/5/2019 | 3.7 | 5.3 | 9.0 | ND | ND | ND | ND | ND | | | 9 | 1/6/2020 | 3.1 | 5.0 | 8.1 | ND | ND | ND | 2.5 | ND | | | 9 | 2/5/2020 | ND | | 9 | 3/2/2020 | ND | | 9 | 4/6/2020 | ND | 4.3 | 4.3 | ND | ND | 2.3 | ND | ND | | | 9 | 5/5/2020 | ND | 5.0 | 5.0 | ND | ND | 2.2 | ND | 2.6 | | | 9 | 6/2/2020 | 3.8 | 4.4 | 8.2 | ND | ND | 2.4 | ND | ND | | | 9 | 7/22/2020 | ND | | 9 | 9/23/2020 | ND | 2.8 | 2.8 | ND | ND | ND | ND | ND | | | 9 | 10/28/2020 | ND | 3.7 | 3.7 | ND | ND | 2.4 | ND | ND | | | 9 | 11/23/2020 | ND | 2.5 | 2.5 | ND | ND | ND | ND | ND | |